


_SDLC introduction

Q auiremengs
& pnalysis

In order to give you the opportunity to
understand how we develop software
let’s start with a quick introduction on the
Software Development Lifecycle (SDLC).

SDLC

Software / System
Development Life
Cycle - SDLC

SDLC is a skeleton of a software development
process that consists of different phases

that should be involved. Further, you will

learn more on our approach to each of

those phases, but let's have a quick look on
SDLC methodologies complementing the
development process.

_SLDC methodologies
Introduction

Having the bricks above one could say that they already form a process to follow. Phases could be
simply executed one after another, just after completion of the previous phase. That's true. The
methodology is called Waterfall.

However in TTPSC we believe that the easiest is not always the best approach. Having delivered over
hundred projects we've discovered enough to say that there are other methodologies that facilitate
software development much better. Our favorite is Scrum coming from an Agile approach.

Why we choose Agile?

In the modern world, we can be sure of only one thing:
it is change.

AGILE allows us to
change the direction
when needed, very

Technology, business and even our customer’s needs change
rapidly. Very often projects take months or even years. During

this period the surroundings can change dramatically — recent
COVID-19 related situation is a great example. In waterfall approach
a project that was designed in a very early phase can miss its
destination completely. Not because the design was bad — simply
the destination changed in the meantime.

often without, or with
very transparent,
impact on the delivery
timelines.

Scrum for customer satisfaction

Scrum, one of agile methodologies, is based on customers’ needs. Work is realized in so called
sprints (iterations).

They are preceded by a planning ceremony that results in a sprint backlog being a plan on what
will be realized during the sprint. Separating work into standalone sprints allows mitigation of



2

one of the risks as developers are focused on upcoming work and not the entire product. The
entire product vision is held in Product Backlog, which is transparent to every stakeholder of the
product. Inside the sprint team is working on a specific chunk of product’s functionality, but for
thatchunkall phasesare involved. That meansthat afterasprint, the delivered productincrement
has been designed, implemented, tested and integrated with already existing functionalities.

After the sprint the increment is evaluated during a dedicated review meeting. This gives the
customer an opportunity to inspect what has been done so far and give feedback.

Based on this feedback next iterations are planned. In order to constantly look for possible
improvements in the process a retrospective meeting is also held, on which the team decides
which element could be improved and plans on how to do that.

VISION > ’ ’ ’ ’ > CONTINUE >

Sprint 1 Sprint 2 Sprint 3 Sprint 4

Getting back to customer’s needs, )

sprint length, ceremonies and \ oe\/e“?ping SPRINT
meetings are aligned with other teams Testing DETAIL
(if there are such), as well as any steps
required by customer's process, so that
our client does not need to perform
any additional work to integrate the
increment of the product.

Well implemented scrum allows (Deployment)

teams to switch directions in a fluent
way, without disturbing the stable
delivery rhythm.

This approach also benefits the clients themselves: they can see an increment of their ordered
product in constant cycles, making educated decisions on the next steps. We hope you
also like it.

_This is how we do it in every phase
Requirements and analysis
The approach will depend on the needs of our customers.

Some have their Product Owners that will work with our teams and serve them well described
backlog items, we take care about the rest. The others have their expectations about the software
described in details and just need our Product Owner(s) to translate the expectations to the
backlog items and drive the team to deliver according to the specification.



3

Finally, we have customers having great ideas about a product they want to have but, they need
guidance on how to make their vision become a real product. With such customers our Product
Owners can show all their skills.

After initial conversation with customer, the
first step is to identify the stakeholders. Usually
they can be divided into two groups: internal
and external. Internal stakeholders are usually
people from different parts of the company
that can provide insights on the product (e.g.
legal, compliance etc.) or will be impacted

by it (e.g. operations, internal users). External
stakeholders are usually the end users of the
product that is going to be built.

When Product Owner gathers requirements for the product to be built, he needs to remember
that although product is for the end users and it needs to fulfill their needs and expectations, it also
needs to meet goals of the organization. That is why identifying and working with stakeholders,
both internal and external, is so important. After initial conversation PO builds a vision of the
product and shares it with the stakeholders. Listening and involving customers in this phase is
crucial, because without their input PO will make assumptions, and not educated guesses.

It shows the routes of different types of users through the product
and what they can achieve by completing a given route. After
such exercise, PO, stakeholders and the development team have
a common understanding of what is to be built. At this point
usually gathered information is stored in JIRA tool by Atlassian,
that Transition Technologies PSC commonly uses for tracking
requirements and further the complete status of the project.

One of the techniques
used to show the

product is User Story
Mapping.

Of course the Product Owner is not left alone in this phase. It is often the case that in order to
analyze some of the requirements in depth, an expertise from a specific field will be required. For
example some non-functional requirements usually engage our experts when it comes to security
or performance. These often aren’t obvious as when thinking about a product, functionality is what
customers are usually interested in the most.

We are always happy to use our experience to support you in specifying your needs. Keep in
mind that as we work in cycles, this and all following phases are continuously repeated until
product is completed.

Design (Architecture & UX/UI)

The fact that we work in an agile approach does not mean we proceed with the implementation
without a good design.

This relates to both UX/UI design, specifying how the software should look like and behave as well
as the design of the software's architecture describing software's elements and relations between
them. While creating user interface/experience design we start from the scratch with our clients
discovering the main purpose of the software. We establish the essential business objectives and
set priorities that defines project’s scope.



At stage of research we want to get awareness of our customers

and final users as much as possible. The goal of the research stage

is to gather all qualitative and/or quantitative data that will make Q
us aware of real needs and background that will allow us to develop

beneficial product.

Thenwe gothrough strategy part. In comparison to other similar products on the market we define
how we want to add value to product and how much it suits our customer’s needs, problems and
goals. By modeling and prototyping we determine application’s content and scope, main features
and functionalities required for the project to succeed. We create low and high fidelity mockups
that will be close to final product. No matter on which stage we are with development, we should
test our product as soon as possible, but this phase is crucial for collecting feedback about our
increment and recognizing possible dysfunctionalities.

Why should your product be inaccessible

. . . -
Last but not least aE NI for example by a visually impaired person?

experience - in Transition Technologies We also see no reason. That is why our products

are compliant with Web Content Accessibility
Guidelines (WCAQG) by default. As a nice addition
they will meet legal regulations about the
accessibility.

PSC we believe that products we
develop should be accessible also by
the users with disabilities.

When it comes to architecture, we are confident that a strong architectural skill in the team
can save a lot of development work, and make resulting software easier to maintain. That is why
apart from the naturally expected experience we assure that our architects are well trained in
recent trends.



5

While planning the architecture they start with the analysis. They do not stick to single approach
and are open to both monolith as well as microservices architecture. In every approach our
specialists remember to divide responsibilities of modules (or microservices), so that the single
responsibility principle is followed. They do not create modules that are tightly coupled. This
allows replacement of whole components and makes them interchangeable, that gives you a lot
of flexibility in case the plan changes.

During architecture design we follow rules such as DDD (Domain-Driven Design) which allow us
to deeply understand the problem our customer is facing and address it correctly. While making
the decision on which technology to use we also asses the real needs. Although in TT PSC we
have developed a proven set of “first choice” technologies and frameworks that helps us in
a decision making process. We are not just re-using it in each case, instead we are looking for the
best one for a specific challenge.

Implementation

This is where the magic (coding) happens. Over the years developers at TT PSC have gained
a lot of experience with different languages, frameworks and tools.

That, combined with up to date knowledge on the latest technologies and the awareness of
security aspects made it pretty easy for us to introduce a lot of standardization in the phase where
code is being written.

Our engineers put a lot of emphasis on the
code's quality, hence we have the rules on how
the code should be written (coding standards)
for different programming languages. In order
to assure that the code we produce follows
the rules, we are using tools like SonarQube
for static code analysis (it does even more,

as it can for example indicate potential
vulnerabilities present in the code).

In addition, while implementing the code we cover it with automatic unit tests. They are used to
verify that given expected conditions/parameters, execution of a unit of the code (like method) will
produce the desired result. This helps a lot when we later modify the existing code — unexpected
change in the code behavior will be detected automatically and developer will be notified about
that. Finally, before the code becomes part of the product it, is a subject to code review by another
developer — meaning that at least two engineers confirm it meets our standards.

Deployment & Testing

We benefit as much as possible from Continuous Integration/Continuous Deployment practices
and tools to introduce automated testing at early stage.

Thank to that, code is frequently integrated and deployed, what allows us to discover any issue
(bug) rapidly and provide necessary fixes in the next integration cycle. It goes hand in hand with
philosophy of frequent inspection and adaptation.



Having deployment done automatically and regularly executed,
makes the deployment to production environment much simpler

and less challenging then it could be.

Once the code is deployed we can further verify the quality (being inseparable part of valuable
products). Testing for us is not a separate phase. It's a part of everyday work, build into provided
features.

To achieve it, completed code does not await a testing phase for bugs to be identified. All quality
checks occur during an iteration and they are performed by cross-functional teams.

Testing is an ongoing activity, executed and
owned by all team members. Therefore, we
include best practices like unit tests, automated
test, TDD (Test Driven Development) or BDD
(Behaviour Driven Development), etc.

While testing we cannot forget about the
security aspects. This becomes extremely
important nowadays when number of
cyberattacks is growing very fast.

In response to that, we have a number of qualified specialists in the area, holding the title of
Certified Ethical Hacker. They are with us to discover possible vulnerabilities in the application (and
allow developers to remove them) before the software can be attacked from the outside.

Maintenance

Once the software is delivered to our customer(s) we don’t leave them on their own.

TT PSC is ready and willing to help you using your product or develop

Q it further by adding new functionalities. When you don't need more, of
D course you will be given a warranty, and our support (even in different
time zones).

_Would you like to know more on how we work? Just reach out to us!



